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SYNOPSIS

The genetic algorithm (GA) is adapted and used to obtain optimal temperature histories
for methyl methacrylate polymerizations. The reaction time is minimized, while simul-
taneously requiring the attainment of design values of the final monomer conversion
and number average chain length. The technique is robust, and gives near-global opti-
mal solutions. As such, it can easily be used for on-line optimizing control of free radical
polymerization reactors in which the reaction is associated with the Trommsdorff effect.
The results obtained from GA can be improved further if these are provided as initial
guesses to a computer code using the Pontryagin minimum principle with the first
order control vector iteration method. q 1997 John Wiley & Sons, Inc.

INTRODUCTION essary to fit experimental data on the rates of
polymerization, needs an explanation different

A considerable amount of research has been re- from the one traditionally being offered. Russell,
ported in the last several years on the modeling Gilbert, and coworkers12–14 are developing im-
and optimization of free radical polymerizations proved theories along similar lines. However, the
exhibiting the gel or the Trommsdorff effect.1,2 earlier theories are fairly good and are still being
The various models have been reviewed by O’Dris- used to model, optimize, and control industrial
coll3 and Hamielec4 and more recently by Achilias reactors, even though they are semi-empirical in
and Kiparissides5,6 and Mita and Horie.7 These nature.
models have been used in several optimization One group of these theories has originated from
studies, which have been reviewed by Farber,8 as the molecular theory of Chiu et al.15 Chiu et al.
well as by Louie and Soong.9 Yet, there are several relate the decrease of the rate constants, kp and
unanswered questions. For example, Faldi et kt , to the polymer concentration and the average
al.10,11 have measured the diffusion coefficients of molecular weight (the latter, through the initial
methyl methacrylate (MMA) and other model concentration, [I ]o , of the initiator) at any time t .
compounds in MMA–polymethyl methacrylate Achilias and Kiparissides5,6 related some of the
(PMMA) systems using forced Rayleigh scatter- parameters of this early model to quantities that
ing and field-gradient nuclear magnetic reso- could be measured directly using nonpolymeriz-
nance (NMR) and have inferred that the propaga- ing systems. There was only a single curve-fit pa-
tion rate constant kp (see Table I for the kinetic rameter, jco , in their model, which was correlated
scheme) is not diffusion-controlled, contrary to to the initial value of the number average chain
the general assumption used in almost all theo- length, mno . The qualitative trends of the experi-
ries. They claim that the decrease in kp with in- mental data on the isothermal polymerization of
creasing monomer conversion (xm) , which is nec- MMA in small ampoules16,17 (namely, sharp in-

crease in xm and the weight average chain length
mw with t after the onset of the Trommsdorff effect,
and the reaction stopping short of complete mono-

* To whom correspondence should be addressed.
mer conversion even though the reactions are ir-
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q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/040529-20 reversible, the latter being referred to as the glass
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effect) were well explained by this theory, while kind of an academic bias. However, the tech-
niques developed herein are quite general and arequantitative agreement was ensured by curve-

fitting the value of the parameter. One major applicable to the minimum PDI (or any other)
optimization problem.drawback of these versions of this group of theo-

ries5,6,15 was that they could not be applied to sem- A newly emerging technique, called genetic al-
gorithm (GA),23–25 has been used to obtain opti-ibatch reactors or to reactors operating under non-

isothermal conditions and so were of little use in mal solutions. This is an extremely robust tech-
nique and gives solutions that are quite close toindustry where such operations were routinely

encountered. Recently, Ray et al.18 and Seth and global optimum, reasonably fast. Hence, this tech-
nique, coupled with a model that is applicable forGupta19 have presented a theory that relates the

rate constants (as well as initiator efficiency19 f ) industrial reactors, is well suited for use for on-
line optimizing control of large scale MMA poly-to the current values of the number average chain

length mn . The parameters of this theory, uf , up , merizations (or of other similar free radical poly-
merizations), provided we can estimate the stateand ut (all functions of temperature T ) have been

estimated19 for MMA polymerization using the of the system on-line. Current experimental work
along these lines is in progress, in which the vis-experimental data of Schulz and Harborth16 and

Balke and Hamielec,17 under isothermal condi- cosity of the reaction mass is used for inferential
state estimation.26,27 GA will then be used to pre-tions in small ampoules. The theory so tuned has

been able to explain quantitatively, experimental dict the optimal trajectory of future control ac-
tions (reactor temperature will be used as the con-data on MMA polymerization in a 1 L PC-inter-

faced, stainless steel, Parrt reactor using ideal- trol variable) at the supervisory level. The actual
implementation of the control on the reactor willized conditions mimicking industrial operations

(namely, step changes in temperature20 and step be effected through a front-end controller. In the
present investigation, use of GA has been re-increases in the initiator and monomer concentra-

tions21) . No additional retuning of the parameters stricted to generate open-loop optimal tempera-
ture histories of the polymerization reactor.was found to be necessary. This suggests that the

theory reflects all the physicochemical phenom- Most of the earlier works8 on the optimization
of polymerization reactors use the far less robustena associated with polymerization quite well. It

is to be noted that other groups of theories could Pontryagin’s minimum principle27–30 or the con-
strained pattern search technique9 to solve a vari-have been modified suitably to apply to industrial

systems, but it is well recognized22 that almost ety of optimization problems as described in the
review of Farber,8 using temperature or initiatorall theories are about equally successful in ex-

plaining rate data, and so the use of the relatively addition rates as control variables. These tech-
niques are not suitable for use for on-line optimi-simple and continuous models in the group origi-

nating from Chiu et al.15 is justified. zation work. GA, on the other hand, is a new and
extremely powerful search technique based on theIn this work, the recent theory18,19 for MMA

polymerization has been used to study the optimi- mechanics of natural genetics and natural selec-
tion. This algorithm was introduced in the midzation of a batch reactor. A commonly studied

problem8,9 is to obtain the temperature history 1960s by Holland;23a discussion of the technique
and its adaptations, as well as its major applica-T (t ) (the control variable), which minimizes the

total reaction time tf , while simultaneously re- tions, are available in several books.24,25 It in-
volves a random search over the control variablequiring the final monomer conversion xmf and the

final value of the number average chain length domain after the problem has been appropriately
coded, usually in terms of strings or chromosomesmnf to meet certain specifications (called desired

values, xmd and mnd ) . This ensures economic oper- comprising binary numbers. The best few solu-
tions evolve over generations using techniquesation, as well as some product property require-

ments, and is referred to as the minimum-time that mimic genetic evolution (hence, the name).
This new technique has been proved to be veryproblem.8 Another common optimization problem

[minimum polydispersity index (PDI) problem] efficient, especially in cases in which the objective
function is flat and exhibits several local optima.is to minimize the PDI of the polymer product.

Unfortunately, it is quite difficult to satisfy all of The advantage of GA lies in the fact that it works
without requiring much information about thethese requirements (min tf , min PDI, mnf Å mnd ,

xmfÅ xmd ) simultaneously.8 Our choice of the mini- system, in contrast to the traditional techniques,
which need gradients, initial guesses, etc. Hence,mum time problem can be faulted for having some
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Table I Kinetic Scheme for Polymerization of MMA

I r

kd

2RInitiation

R / M r

ki

P1

Pn / M r

kp

Pn/1Propagation

Pn / Pm r

ktc

Dn/m (ktc à 0 for MMA)Termination by combination

Pn / Pm r

ktd

Dn / DmTermination by disproportionation

Pn / M r

kf

P1 / DnChain transfer to monomer

Pn / S r

ks

Sr / DnChain transfer to monomer via solvent

Sr / M r
fast

S / P1

or
Pn / M r

ks

Dn / P1

for more complex systems, in which the gradients useful in the definition of the monomer conver-
sion xm for semibatch reactors. The other sym-cannot be easily evaluated and the initial guess

becomes crucial, GAs lead to solutions that are bols are defined in the nomenclature section.
The (general ) mass balance and moment equa-very close to the global optimum or, in fact, pro-

vide very good initial points to start off other tech- tions [ functions, F , in eq. (1 ) ] have been given
by Ray et al., 18 as well as by Seth and Gupta, 19niques that require excellent initial guesses (e.g.,

Pontryagin’s minimum principle using the first and are given in Table II, along with related
expressions for the rate constants, accountingorder control vector iteration method).
for diffusional limitations exhibited at higher
monomer conversions. Table III gives the values
of the several properties and parameters to beFORMULATION
used for MMA polymerization.

Equations (a) – (c) in Table II express the initi-Table I gives the kinetic scheme for MMA poly-
ator efficiency f and the rate constants kp and ktdmerization (with ktc á 0). The mass balances for
(Åkt for PMMA) in the following form:MMA polymerization in a semibatch reactor are

given by equations having the general form

f Å f (x , u , p ) (4a)dx /dt Å F (x , u ) ; x (t Å 0) Å xo (1)
kp Å kp (x , u , p ) (4b)

where x (t ) is the vector of state variables defined
ktd Å ktd (x , u , p ) (4c)by

with
x å [I , M , R , S , l0 , l1 , l2 , m0 , m1 , m2 , zm , zm1]T

p Å [uf , up , ut ]T (5)
(2)

More details can be found in Ray et al.18 and Sethand u (t ) is the vector of control variables [in the
present case, it is a scalar T (t ) ] : and Gupta.19 The model parameters uf , up , and ut

have been tuned using the isothermal data of
Balke and Hamielec17 on MMA polymerization inu (t ) Å u (t ) Å T (t ) (3)
small ampoules. The model has been found to be
in good agreement with the experimental data onlk and mk (k Å 0, 1, 2, rrr) represent the k th
a 1 L Parrt reactor.20,21 No retuning of the valuesmoments of the chain length distributions of
of the parameters p were found to be necessary.species Pn and Dn , respectively. jm , jm1 are addi-

The objective function I used in this study istional variables to account for addition and va-
porization of monomer after time t Å 0 and are given by
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Table II Model Equations for MMA Polymerization in Semibatch Reactorsa

Mass Balance and Moment Equations

1.
dI
dt
Å 0kdI / Rli(t )

2.
dM
dt
Å 0(kp / kf )

loM
Vl

0 ki
RM
Vl

0 ksS
lo

Vl
/ Rlm (t ) 0 Rvm (t )

3.
dR
dt
Å 2 fkdI 0 ki

RM
Vl

4.
dS
dt
Å Rls (t ) 0 Rvs (t )

5.
dlo

dt
Å ki

RM
Vl

0 kt
l2

o

Vl

6.
dl1

dt
Å ki

RM
Vl

/ kp M
lo

Vl
0 kt

lol1

Vl
/ (ksS / kfM )

(lo 0 l1)
Vl

7.
dl2

dt
Å ki

RM
Vl

/ kp M
lo / 2l1

Vl
0 kt

lol2

Vl
/ (ksS / kfM )

(lo 0 l2)
Vl

8.
dmo

dt
Å (ksS / kfM )

lo

Vl
/ Sktd /

1
2

ktcD l2
o

Vl

9.
dml

dt
Å (ksS / kfM )

l1

Vl
/ kt

lol1

Vl

10.
dm2

dt
Å (ksS / kfM )

l2

Vl
/ kt

lol2

Vl
/ ktc

l2
1

Vl

11.
djm

dt
Å Rlm(t ) 0 Rvm(t )

12.
djml

dt
Å Rlm(t )

13. Vl Å
S(MWs )

rs
/ M(MWm )

rm
/ (jm 0 M )(MWm )

rp

14. fm Å
M(MWm )/rm

M(MWm )
rm

/ S(MWs )
rs

/ (jm 0 M )(MWm )
rp

15. fs Å
S (MWs )/rs

M(MWm )
rm

/ S(MWs )
rs

/ (jm 0 M )(MWm )
rp

16. fp Å 1 0 fm 0 fs

Min I[u (t ) ] Å tf / w1(1 0 xmf /xmd )2 (6a) In eq. (6), xmd and mnd are the desired values of
monomer conversion; and the number average/ w2(1 0 mnf /mnd )2

chain length at t Å tf , xmf , and mnf are the actual
subject to (s.t.) values corresponding to t Å tf , and w1 and w2 are

dx /dt Å F (x , u ) (6b) (large) weightage factors. The choice of the objective
function in eq. (6) minimizes the deviations (due toumin ° u (t ) ° umax (6c)
large values of w1 and w2) of xmf and mnf from their

where desired values. The form of I used in eq. (6) in
which the end point requirements (constraints) arexm(t ) å (1 0 M /zm1) (7a)
included as penalty functions is quite popular.8,25

mn (t ) Å (l1 / m1) / (lo / mo ) (7b) The choice, xmf à xmd , forces the amount of unre-
acted monomer to be small, thus keeping post-reac-xmf Å xm(tf ) (7c)
tor separation and recycling costs low. The choice,
mnfà mnd , forces the polymer properties to be as permnf Å mn (tf ) (7d)
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Table II Continued

Cage, Gel, and Glass Effect Equations

1
f
Å 1

fo
F1 / uf (T )

M
Vl

1
exp [jI3{0c / cref }]

G (a)

1
kt
Å 1

kt,o
/ ut (T ) m2

n
lo

Vl

1
exp[0c / cref ]

(b)

1
kp
Å 1

kp,o
/ up(T )

lo

Vl

1
exp[j13{0c / cref }]

(c)

c Å

g HrmfmVO *m
j13

/ rs fsVO *s
j23

/ rp fpVO *p J
rmfmVO *mVfm / rsfsVO *s Vfs / rpfpVO *p Vfp

(d)

cref Å
f

Vfp
(e)

j13 Å
VO *m (MWm )

VO *p Mjp

(f )

j23 Å
VO *s (MWs )

VO *p Mjp

(g)

jI3 Å
VO *I (MWI )

VO *p Mjp

(h)

kd Å ko
d exp(0Ed /RT ) (i)

kp,o Å ko
p,o exp(0Ep /RT ) ( j)

kt,o Å ktd,o Å ko
td,o exp(0Etd /RT ) (k)

a Refer to Seth and Gupta.19

specifications, since several physical properties of problem. Initially (at generation number Ng Å 0),
a population having Np chromosomes, l ( i)

Nchr ; i Å 1,polymers are related to the value of their mn . The
objective function in eq. (6) has been used earlier 2, . . . , Np , is generated. Each chromosome in this
by Sachs et al.,31 but with a different kinetic model, population comprises of a sequence of Nga numbers
and by Farber and Laurence32 for styrene polymer- (called substrings), which are binary representa-
ization. The techniques developed herein are quite tions of values of the control variable at Nga equis-
general and can be applied to other choices of the paced points in 0 ° t ° tf o (tf o , an initial estimate
objective function and end-point constraints (as of tf , is to be supplied). Each of these substrings,
well as to low molecular weight systems). The ini- in turn, comprises of a set of Nstr binary numbers
tial values xo in eq. (1) are given by (0 or 1). Thus, each chromosome has NchråNgaNstr

binary digits. The Nchr individual binaries are gen-
xo Å [Io , Mo , 0, 0, 0, 0, 0, 0, 0, 0, Mo , Mo ]T (8) erated using a random number generator subrou-

tine. The binary string (sequence of Nchr binaries)
of the i th chromosome, when decoded and interpo-Figure 1 gives the flow chart illustrating how
lated (mapped) between the upper (u ° b) andGA, as applied to the present problem [eq. (6)]
lower (u ¢ a) bounds of u , gives a digitized u-works. We have had to make several adaptations
history (a set of Nga values), [u (i) ] å [u (i) (1),to the conventional algorithm24,25 and the com-

puter code (SGA25) in order to solve the present u (i ) (2), . . . , u (i ) (Nga)], corresponding to that chro-
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Table III Parameters Used for Polymerization of MMA

rm Å 966.5 0 1.1 (T 0 273.1) kg/m3

rp Å 1200 kg/m3

rs Å 844.18 0 1.07165 (T 0 323.1) kg/m3 (benzene)
fo Å 0.58; for AIBN
fo Å 1.00; for BPO

ko
d Å 1.69 1 1014 s01; for BPO

ko
d Å 1.053 1 1015 s01; for AIBN

ko
p,o Å 4.917 1 102 m3/mol-s

ko
td,o Å 9.8 1 104 m3/mol-s
ktc Å 0.0
kf Å 0.0
ki Å kp

ks Å 0.0
Ed Å 125.40 kJ/mol; from BPO
Ed Å 128.45 kJ/mol; for AIBN
Ep Å 18.22 kJ/mol
Etd Å 2.937 kJ/mol

(MWm ) Å 0.10013 kg/mol
(MWs ) Å 0.07811 kg/mol
(MWI ) Å 0.06800 kg/mol; for radicals from AIBN
(MWI ) Å 0.07700 kg/mol; for radicals from BPO

Constitutive Parameters for the Cage, Gel, and Glass Effects
9.13 1 1004 m3/kg; for AIBNVO *I Å
8.25 1 1004 m3/kg; for BPOVO *I Å
8.22 1 1004 m3/kgVO *m Å
7.70 1 1004 m3/kgVO *p Å
9.01 1 1004 m3/kg; for benzeneVO *s Å

Mjp Å 0.18781 kg/mol
g Å 1

Vfm Å 0.149 / 2.9 1 1004 [T(K ) 0 273.1]
Vfp Å 0.0194 / 1.3 1 1004 [T(K) 0 273.1 0 105]; for T õ (105 / 273.1) K
Vfs Å 0.025 / 1.0 1 1003 [T(K ) 0 171.1] (benzene)

Best-fit Correlations (BFCs)
log10[ut (T ), s ] Å 1.241 1 102 0 1.0314 1 105 (1/T ) / 2.2735 1 107 (1/T2)
log10[up (T ), s ] Å 8.03 1 101 0 7.50 1 104 (1/T ) / 1.765 1 107 (1/T2)

For AIBN–MMA system (bulk polymerization):
log10[103uf (T ), m3 mol01] Å 2.016 1 102 0 1.455 1 105 (1/T ) / 2.70 1 107 (1/T2)

For BPO–benzene–MMA system (solution polymerization):
log10[103uf (T ), m3 mol01] Å 03.763 1 101 / 1.686 1 104 (1/T )

mosome, as described in Table IV (in the conven- nificant oscillations in the optimal u histories and
is both undesirable and non-implementable. In or-tional GA,24,25 bÅ umax and aÅ umin). At this stage,

we have a set of Np chromosomes, each represent- der to reduce these oscillations, further constraints
are clamped on to the values of u (i ) ( j) in the pres-ing a different digitized u(t) history, appropriately

coded in the form of a string of Nchr binaries. The ent study so that neighboring values of u do not
differ by more than some prescribed values, Duminminimum difference between any two digitized val-

ues of u is (b 0 a)/(2Nstr 0 1), this being the accu- and Dumax. Thus,
racy to which u can be determined.

The values of u (i ) ( j) generated by the above pro- Dumin ° Du (i ) ( j)[åu (i ) ( j / 1) 0 u (i ) ( j)]
cedure using b Å umax and a Å umin could fluctuate
wildly between these two limits. This leads to sig- ° Dumax (9)
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Figure 1 Flow chart indicating the working of GA.
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or in eq. (8) and continuing until tÅ tf o . The program
stores the values of each of the state variables,
x (i ) ( j), at every intermediate value of t , such thatu (i ) ( j) / Dumin ° u (i ) ( j / 1)
there are Nsim sets of x . The value of I (i ) at each of

° u (i ) ( j) / Dumax (10) these storage locations is computed, and the loca-
tion t (i )

min of the minimum of I (i ) , as well as the
where Dumin is a negative number. Thus, the first minimum value itself, I (i )

min, are obtained by search.
value, u (i ) (1), corresponding to tÅ 0 is determined Evidently, tf o should be chosen large enough so
randomly to lie between umax and umin, while all that Imin occurs in 0° t° tf o for all i . The integra-
subsequent values are determined randomly tion of the balance equations and the location of
within a smaller range around the previous value. I (i )

min for each of the Np chromosomes is carried out.
This procedure is being called adaptive mapping. One additional point needs to be emphasized.
The accuracy (minimum difference between values The computer code SGA,25 which has been used in
of u) of internal points is observed to be higher this study after modification maximizes a fitness
than for the first (t Å 0) point, if ÉDumax 0 DuminÉ function F (i ) rather than minimizes an objective
õ Éumax 0 uminÉ. function I . Hence, we define a fitness function as

The decoded and adaptively mapped, discretized follows:
values of u are curve-fitted piece-wise (splines) to
obtain a continuous function, u (i ) (t). A piece-wise

F (i ) å 1/(1 / I (i )
min) (11)cubic Hermite subroutine is used to do this. This

continuous function is again digitized to give Nsim(-
¢Nga) values of the control variable, [U (i) ( j); jÅ 1, and maximize its value (wherever I (i ) is to be mini-
2, . . . , Nsim]. The generation of several additional mized).
intermediate, discretized values of u (i ) is necessary The next step in GA is to have reproduction in
for integrating the model differential equations the population of chromosomes. A mating pool is
[eq. (1)]. first formed. In this pool, priority is given to those

The digitized temperature history, [U (i ) ( j); j chromosomes that have higher fitness values. The
Å 1, 2, . . . , Nsim], corresponding to the i th member essential idea is to pick out the above average
of the population, is used in a Gear subroutine33

strings in the current population and include (mul-
(D02EJF in the NAG library) to integrate the bal- tiple) copies of these in the mating pool in a proba-
ance equations, starting with the initial conditions bilistic manner. It is here that the principle of nat-

ural selection (survival of the fittest) comes in ac-
tion. The principle of proportionate reproduction is

Table IV Decoding and Adaptive Mapping used. The probability of selecting the i th chromo-
Procedure for Nga Å 2

some in the mating pool is F (i ) / (
Np

iÅ1
F (i ) . A roulette

Nchr Å NgaNstr Å 2Nstr ; a ° u ° ba

wheel (whose circumference is marked for eachExample:
chromosome proportionate to its fitness value) isl (i )

Nchr
Å [10011rrr0; 11100rrr0]; i Å 1, 2, . . . , Np

spun Np times. In each spin, the chromosome corre-Nstr binariesNstr binaries
sponding to the location of the roulette wheelDecode each of the (two sets of) binary numbers into
pointer is copied into the pool. This thought experi-decimal numbers, d1 and d2 , using, for example,
ment is implemented using Np random num-

d1 Å 1 1 2Nstr01 / 0 1 2Nstr02 / rrr / 0 1 20

bers.24,25

Now, using the mapping, obtain the digitized u After the mating pool is created, crossover and
history mutations take place to produce the new popula-

tion (next generation). These operations take[u (i )( j )] Å [u (i )(1), u
(i )

(2)]
place at the chromosome (binary) level. Two chro-

Å a / dj 1 VAL; i Å 1, 2, . . . , Np mosomes are selected randomly from the mating
j Å 1, 2 pool, a crossing site is selected (randomly again),

and portions of the chromosomes before and afterwhere
the crossing site are exchanged. For example, for

VAL Å (b 0 a )/2Nstr 0 1) seven-bit chromosomes with crossing site after
the third binary, the crossover is described by thea a Å umin, b Å umax; for j Å 1 a Å u (i)( j 0 1) / Dumin, b

Å u (i)( j 0 1) / Dumax; for j ú 1; s.t. umin ° a, b ° umax following:
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Table V Formulation of the Optimal Control100É1111
110É0100 r

100 0100
110 1111 Problem Using Pontryagin’s Minimum

Principlea With First Order Control Vector
Iteration Method(old generation) (new generation) (12)

Optimization Problem

While performing crossovers, only Nppc chromo- Max I [u(t )] Å G[x(tf )]
somes are crossed, the remaining being left un- s.t.
touched (pc is referred to as the crossover proba- dx/dt Å F (x, u )

umin ° u(t ) ° umaxbility).
Another operation, called mutation, is also Here,

used to improve the next generation. The muta-
G[x(tf )] Å 0[tf / w1(1 0 xmf /xmd )2 / w2(1 0 mnf /mnd )2]tion operator changes a binary number from 1 to

0 or vice versa, with a probability pm . This opera-
Proceduretion is carried out for each of the NpNchr bits in
1. Guess u(t ) Å T (o)(t ); 0 ° t ° tfothe population, again using appropriate random
2. With this u(t ), integrate the state variable

numbers.24,25 The need for mutation leads to a equations dx/dt Å F(x, u ) to obtain x(t ); 0 ° t
local search around the current solution and helps ° tf , with tf obtained by solving
maintain the diversity of the population.25

H(tf ) Å (ÌG/Ìx)FÉtÅtf
Å 0The random crossover procedure discussed

above leads to a preponderance of crossovers in 3. With the values of x(t ) and u(t ), integrate the
the (inactive) range, t ( i )

min ° t ° tf o , if the guess adjoint equations backwards from t Å tf to t Å 0,
value of tf o supplied to the computer code is too

dlT/dt Å 0(ÌH/Ìx); lT(tf ) Å ÌG/ÌxÉtÅtflarge. This procedure thus needs to be adapted so
that crossovers take place in a t-domain (hori- where H Å lTF
zon), which becomes smaller over generations. 4. Correct u(t ) by
What is done is to limit crossovers to 0 ° t

u(t) Å u(t) / 1(ÌH/Ìu ), 1 ú 0° tmin,best1 (1/S ) , where tmin,best is the best (mini-
5. Perform a single variable search (on 1) to generatemum) of the Np values of t ( i )

min in any generation,
several u(t ), obtain I for each of these historiesand S is a safety factor supplied to the program
(after integrating the state variable equations for(obtained by numerical experimentation). The
each case), then obtain 1opt corresponding to thestring length corresponding to tmin,best (1 / S ) is
maximum value of I (note that ÌH/Ìu is notgiven by
updated during this search).

6. Update u(t ) by

unew(t ) Å u old(t ) / 1opt(ÌH/Ìu )N *chr Å Nchrtmin,best (1 / S ) /tf o (13)
and return to step 2.

7. Iterate until convergence is attained.
where N *chr is an (next higher) integer. The region

a Refer to Ray, Ray and Szekeley, Bryson and Ho, and Lapi-in which crossovers take place would decrease
dus and Luus.27–30

from generation to generation as tmin,best de-
creases. Such an adaptation of the conventional
GA can be used to advantage for any minimum RESULTS AND DISCUSSION
time optimization problem and provides an auto-
matically narrowing crossover horizon. Several checks were made to ensure that the com-

The optimal solutions generated using GA can puter code prepared was free of errors. The code
be compared with those obtained (for the same was used to generate the monomer conversion and
objective function, constraints, and model equa- the number average chain length for different iso-
tions) from Pontryagin’s minimum principle27–30 thermal conditions. These were found to match
using the first order control vector iteration tech- the results of Seth and Gupta19 and are shown in
nique (referred to as P1). The algorithm used is Figure 2 for an initial initiator concentration [I ]o

summarized in Table V and is an adaptation of of 25.8 mol/m3 (reference value). These results
that used by Vaid and Gupta34 and Ray and were generated with a value of TOL of 1007 in the

code DO2EJF, and no significant differences wereGupta35 earlier.
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Figure 2 xm (t ) (solid) and mn (t ) (dotted) for isothermal bulk polymerization of MMA
using AIBN ([I ]o Å 25.8 mol/m3).

found upon decreasing the value of this parame- generations for eq. (15)] . A similar check was
made for the computer code using Pontryagin’ster. This check indicated that the simulation part

of our code was free of errors and also provided principle with the first order control vector itera-
tion method (P1). The starting guess for this tech-results that could be used to explain optimal his-

tories qualitatively. The next check was on the nique was T (o ) Å 907C [ for eq. (14)] and T (o )

Å 607C [ for eq. (15)] . Again, the expected isother-correctness of the optimization part of our pro-
gram. From Figure 2, it is clear that if we use mal optimal histories were obtained in two and

eight iterations [ for eqs. (14) and (15), respec-
tively]. These checks gave confidence on both ourxmd Å 0.0134
computer codes, GA and P1.

mnd Å 2365 The optimization program using GA was now
run for607C ° T (t ) ° 907C (14)

xmd Å 0.94the optimal temperature history would be isother-
mal at 607C (any higher temperature would give

mnd Å 1800lower values of mnf while simultaneously giving
higher xmf ) . Also, under these isothermal condi- 607C ° T (t ) ° 907C (16)
tions, the value of tf would be 230.77 s. Similarly,
for These values are quite close to those used by Vaid

and Gupta,34 as well as other workers, and are
xmd Å 0.4926 being used as reference values to illustrate the

working of GA. Figure 3 shows how the optimal
mnd Å 532.16 temperature history (the best for each genera-

tion) evolves over generations. Very little im-607C ° T (t ) ° 907C (15)
provement takes place after about 12 generations,
and so results for Ng ú 12 are not shown. Thethe optimal T (t ) would be isothermal at 907C (see

Fig. 2), with tf Å 969.67 s (any lower temperature CPU time for generating these results was 15.8 s
on a DEC 3000 axp . The variation of mn and xmwould lead to higher values of mnf while simultane-

ously leading to lower xmf ) . The optimization with time, using the optimal temperature history
(for NgÅ 12) shown as GA15 (15 indicating Duminproblems described in eqs. (14) and (15) were

solved using the GA computer code (using the pa- and Dumax of 015 and /157C) in Figure 3, are
shown in Figures 4 and 5 (by solid lines markedrameters of Table IV), and, in both cases, the ex-

pected optimal temperature histories were ob- GA15). Some amount of oscillations are observed
in the optimal temperature history (Fig. 3), whichtained [in eight generations for eq. (14) and three
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Figure 3 Evolution of temperature histories towards the optimal one, with generation
number Ng corresponding to xmd Å 0.94, mnd Å 1800 (for parameters of Table VII).
Arrows indicate the end points of corresponding curves.

could be reduced by changing some of the parame- approached. The agreement in Figure 6 is, thus,
extremely good (perhaps fortuitously so). It is in-ters in Table VI (see later). Figure 6 compares

the optimal history (curve GA15; same as for Ng teresting to observe from Figure 3 and 4 that opti-
mal operation requires relatively low tempera-Å 12 in Fig. 3) with that obtained using Pontrya-

gin’s minimum principle (curve P1, obtained by tures (leading to relatively high values of mn ; see
Fig. 4), followed by a gradual increase in T (t )starting with T (o ) Å 907C and converging in about

eight iterations). The values of the objective func- (associated with some fall in mn ) to its maximum
value of 907C. The value of mn builds up to itstion I for the GA15 and the P1 cases are found

to be 2008.36 and 2016.96, respectively. The two desired value by exploiting the gel effect near the
end, this being exhibited as a sharp increase inhistories are also observed to be fairly close to

each other. It may be noted24,25,27–30 that both GA mn (t ) and xm(t ) near t à tf . The sudden increase
in mn (t ) to its final value of mnd is a characteristicand P1 lead to near optimal solutions only and

become very sluggish as the optimal history is of almost all optimal solutions obtained in our

Figure 4 mn (t ) corresponding to Topt (t ) for the GA15 run, as well as for those corre-
sponding to Figure 6.
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Figure 5 xm (t ) corresponding to the GA15 run, as well as for those given in Fig-
ure 6.

study and emphasizes the need for model-based GA15. A similar acute sensitivity to the initial
guess history was also observed by Vaid andon-line optimizing control in the period prior to

the onset of the gel effect. Gupta,34 who used a similar algorithm but solved
a slightly different optimization problem. In fact,Computations were carried out using Pontrya-

gin’s minimum principle (first order) for the condi- we obtained different (sub-) optimal temperature
histories on using different T (o ) (t) outside of thetions described in eq. (16), but using the initial

guess T (o ) (t), different than that used for generat- narrow window. In each case, the xmf and mnf were
very close to their desired values, while the valuesing Figures 4–6 (i.e., isothermal T (o ) (t) different

from 907C). It was found that the (near) optimal of I differed slightly. This could be because of two
possible reasons. First, the value of Iopt is relativelytemperature histories were very sensitive to the

initial guess and that there was only a very narrow insensitive to Topt(t); and second, there could be
several shallow, local minima, and P1 converges towindow of the initial guess for which converged

solutions were obtained which were similar to (near) these, depending on the initial guess T (o ) (t)
provided. Which of these two causes leads to the
ineffectiveness of the P1 technique is not clear;

Table VI Parameters Used for Reference Run nor is this answer too important. However, GA is
known24,25 to reach the global optimum and is ro-GA Parameters
bust, so we believe that its solution is the true one.Np Å 100
The P1 technique also converges to the solutionNstr Å 7
provided by GA if we start from T (o ) Å 907C or useNga Å 10
T (o ) (t) somewhat similar (but not identical) to theNsim Å 100

[umin, umax] Å [60, 90]; 7C optimal history provided by GA.
[Dumin, Dumax] Å [015, /15]; 7C This drawback of the P1 technique can be over-
pc Å 0.99 come by the use of GA to first generate near opti-
pm Å 0.000009 mal solutions that can be provided as initial guess
S Å 0.2 to be improved upon by using P1. We believe that
tfo Å 4000 s GA followed by P1 is a superior combination than
w1 Å w2 Å 2.5 1 105

the first order Pontryagin technique followed byIn addition, the value of the parameter RS used25 for
the second order (P2) technique,27–30 in whichgenerating binaries is 0.9.
second order derivatives are required. Figure 7

Design Parameters shows the improvement of the optimal T (t ) using
xmd Å 0.94 the GA15-P1 combination. The value of I of
mnd Å 1800 2008.71 corresponding to GA15 is reduced to
[I ]o Å 25.8 mol/m3

1980.34 using the P1 technique. Similar improve-
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Figure 6 Topt (t ) corresponding to the conditions of Figure 3 using the P1 (dotted)
and GA (solid) techniques. GA15 corresponds to the reference run (Table VII), while
GA30 corresponds to [DTmin, DTmax] Å {307C (all other parameters are the same as
given in Table VII). Arrow indicates tf for P1.

ments in the value of I have been found in other behavior in Topt (t ) , which needs to be dampened
by changing some other parameter (e.g., Dumin,cases of GA / P1 tried in this study (detailed

results can be provided on request) . Dumax) simultaneously. In fact, the reference val-
ues of the parameters (run GA15) have been cho-We now study the effect of varying the parame-

ters (Table VI) used in GA. Details of the parame- sen such that the oscillations are minimized for
this run. Similar oscillatory behavior is observedters, which are varied one at a time, keeping all

others at their reference values (Table VI), are (curve 3, Fig. 8) in the initial region by increasing
Nstr from 7 (ref) to 14. It is clear that any changegiven in Table VII. Figure 8 shows that in the

initial region (low t ) , the optimal temperature made to improve the accuracy of results leads to
more oscillations in the initial region, and its ef-history is somewhat sensitive to the number Np

of chromosomes in the population (curves 1 and fects need to be dampened out. A similar conclu-
sion is obtained on studying curves 4 and 5 in2). However, changing Np could lead to oscillatory

Figure 7 Topt (t ) obtained with the P1 (dotted) technique using the optimal history
from GA15 (solid) as an initial guess.
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Table VII Some Details Corresponding to T(t) Shown in Figures 8–13

Parameter Value
Curve No. Parameter Varied (Ref. Value) Iopt Ng

a Fig. No.

GA15 — Table 6 2008.36 12 8
1 Np 50 (100) 2076.49 9 8
2 Np 200 (100) 1953.89 15 8
3 Nstr 14 (7) 1959.63 18 8
4 Nga 20 (10) 2065.29 13 9
5 Nga 30 (10) 2191.00 10 9
6 pm 1005 (9 1 1006) 2265.56 14 10
7 pc 0.98 (0.99) 2101.24 14 10
8 Nsim 80 (100) 2128.62 16 10
9 RS 0.6 (0.9) 1946.64 17 10

10 DTmin {207C ({157C) 2021.63 7 11
DTmax

11 DTmin {307C ({157C) 2020.52 7 11
DTmax

12 S 0.4 (0.2) 2141.61 10 11
13 xmd 0.95 (0.94) 2384.44 16 12
14 mnd 1600 (1800) 1850.98 17 13
15 mnd 2000 (1800) 2294.14 17 13
16 [I ]o 15.48 (25.8) 1629.82 6 13

a For achieving convergence.

Figure 9 and curve 8 in Figure 10. As Nga is in- changing RS are also shown (curves 8 and 9) in
Figure 10.creased, Topt (t ) oscillates considerably, to the ex-

tent that Iopt worsens. The effect of increasing the Figure 11 shows the effect of varying the pa-
rameter characterizing one of the adaptations ofmutation probability is similar. Decreasing the

crossover probability from 0.99 to 0.98 (curve 7, the conventional GA, namely, the use of Dumin

and Dumax as constraints. These were introducedFig. 10) does not lead to oscillations, but worsens
Iopt slightly. The effects of decreasing Nsim and to dampen oscillations in Topt (t ) , as well as to

Figure 8 Effect of varying Np and Nstr on the optimal temperature histories. Curve
1: Np Å 50. Curve 2: Np Å 200. Curve 3: Nstr Å 14. Results for the reference run (GA15)
also shown for comparison.
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Figure 9 Effect of varying Nga on the optimal temperature history. Curve 4: Nga

Å 20. Curve 5: Nga Å 30.

ensure implementability of the optimal history in temperatures of neighboring points are operative.
Figure 6 shows that curve 11 (renamed GA30)industrial systems. The actual values of DTmin

and DTmax to be used should really be decided by does not compare as well with curve P1 quantita-
tively, as does the GA15 results due to the oscilla-the heat transfer limitations of the reactor, but

these have been considered as parameters and tions present in GA30. Use of a damping mecha-
nism through DTmin and DTmax thus appears jus-chosen somewhat arbitrarily here to study their

effect. It is observed that increasing the range of tified.
Figure 11 also shows (curve 12) the effect ofDT from{15 to{307C leads, as expected, to more

oscillations and to a worsening of Iopt . It is inter- increasing the safety factor S , a parameter re-
flecting another adaptation we have made in theesting to compare curve 11 (for030°DT° 307C;

i.e., no constraint is operative on the temperature conventional GA. Increasing S leads to a larger
domain in which crossovers are permitted andof a neighboring point, except 607C ° T ° 907C),

with the results from the P1 technique [with slows down the rate of convergence (note that GA,
too, becomes sluggish as the optimal history isT (o ) (t ) Å 907C], in which no constraint on the

Figure 10 Effect of varying pm , pc , Nsim, and RS on the optimal temperature history.
Curve 6: pm Å 1005 . Curve 7: pc Å 0.98. Curve 8: Nsim Å 80.
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Figure 11 Effect of varying (DTmin, DTmax) and S on the optimal temperature history.
Curves 10 and 11: (DTmin, DTmax) Å {20 and {307C, respectively. Curve 12: S Å 0.4.

approached, and the results in Figs. 8–11 are all the design variables xmd , mnd , and [I ]o . Figure 12
(curve 13) shows that somewhat lower initialnear optimal in that sense).

The general conclusion from this parametric sen- temperatures and slower rates of rise of T (t ) are
required to obtain higher final values of the mono-sitivity study is that we need to experiment with

the several parameters to obtain good, near-optimal mer conversion if we wish to keep mnd unchanged.
The presence of oscillations in Topt (t ) indicatesu-histories with GA. In fact, one can carry out such

a study to establish some general rules for the that the reference values of the parameters used
are not appropriate to generate the results for thischoice of the parameters, but this was not the focus

of the present work. Since the histories are global case and need to be retuned if we wish to have
better results. Figure 13 (curves 14 and 15) shows(near) optimal solutions, we can follow up GA with

the first order Pontryagin (P1) technique to get how the increase of Topt (t ) should be delayed to
give higher mnf products. Figure 14 shows the de-good final results. This combination exploits the

best features of both these techniques. layed gel effect helping achieve higher mnf prod-
ucts. The effect of decreasing the initiator loadingFigures 12 and 13 show the effect of varying

Figure 12 Effect of varying xmd on the optimal temperature histories. Curve 13 corre-
sponds to xmd Å 0.95.
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Figure 13 Effect of varying mnd and [I ]o on the optimal temperature histories. Curves
14 and 15: mnd Å 1600 and 2000, respectively. Curve 16: [I ]o Å 15.48 mol/m3.

[I ]o is also shown in Figure 13 (curve 16). Higher model-based on-line optimizing control. It is diffi-
cult to predict the qualitative trends of Topt (t ) in-temperatures are necessary with lower [I ]o to

speed up the reaction so that tf is minimized. tuitively using the isothermal results shown in
Figure 2, and this emphasizes the importance ofThe general trends observed in all these cases

is that optimal temperature histories for MMA such quantitative studies.
The variation of the polydispersity index (PDI;polymerization are such that, initially, we have

almost constant mn . This is followed by a period see the nomenclature section) of the polymer with
time, under optimal conditions (GA15), is shown induring which mn decreases (as T goes up). Finally,

the gel effect occurs, which leads to a relatively Figure 15. The final value of the PDI is observed to
be substantially lower than that of polymer pro-rapid increase in xm and mn to their desired values.

The temperatures in the pre-gel effect region are duced under isothermal conditions, which is a bless-
ing in disguise, since reduction of the PDI was notquite important, particularly since rapid changes

in T after the onset of the gel effect are not easy envisaged in our optimization problem [eq. (6)].
There appears to be some controversy in the litera-to implement. This points out the need for using

Figure 14 mn (t ) corresponding to the optimal temperature histories given in Fig-
ure 13.
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Figure 15 Variation of the polydispersity index (PDI) with time. The solid curve
represents the PDI corresponding to the GA15 run, while the dotted curves correspond
to isothermal polymerizations at 80 and 907C.

ture regarding whether the minimum time problem ator (mol m03)
kd , ki , kf , kp rate constants for the reactions inensures, simultaneously, minimum PDI.34 Our re-

ks , ktc , ktd Table I at any time t (s01 or m3sults indicate substantial lowering of the PDI.
mol01 s01)

l ( i )
Nchr i th chromosome in population

CONCLUSIONS
M moles of monomer in liquid phase

A robust optimization technique, genetic algo- (mol)
rithm, has been used in this study to obtain global Mn number average molecular weight
optimal temperature histories for MMA polymer- Å (MWm) (l1 / m1) / (lo / mo ) (kg
ization. These can be improved further by using mol01)
the first order Pontryagin method. The technique Mw weight average molecular weight
can easily be used for on-line optimizing control Å (MWm ) (l2 / m2) / (l1 / m1) (kg
of experimental reactors. mol01)

(MWI ) , molecular weights of pure primary
(MWm) , radicals, monomer, and solvent

NOMENCLATURE (MWs ) (kg mol01)

a lower limit of u Nchr total number of binary digits in
chromosome Å NgaNstr

b upper limit of u Ng generation number

Dn dead polymer molecule having n Nga number of u values GA generates
repeating units

f initiator efficiency Np number of chromosomes in the
population

F fitness function [eq. (11)] Nsim number of u values after interpola-
tion

I objective function Nstr number of binary digits represent-
ing each of the Nga control vari-

I moles of initiator at any time t ables
p vector representing the model pa-(mol)

[I ]o initial molar concentration of initi- rameters uf , up , ut
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pc probability for crossover net monomer added to the reactor,zm , zm1

as defined in Seth and Gupta19

pm probability for mutation uf , up , ut adjustable parameters in the
model for cage, gel, and glass ef-

PDI polydispersity index (ÅMw /Mn ) fects, respectively (m3 mol01 , s,
s)

Pn growing polymer radical having n lk kth (k Å 0, 1, 2, rrr) moment of
repeat units live (Pn ) polymer radicals å (

`

nÅ1R primary radical
nkPn (mol)

mk kth (k Å 0, 1, 2, rrr) moment ofRS parameter in random generator
code dead (Dn ) polymer chains å (

`

nÅ1S moles of solvent in liquid phase nkDn (mol)
(mol)

mn number average chain length at
S safety factor time t å (l1 / m1) / (lo / mo )

mw weight average chain length at
S solvent radical time t å (l2 / m2) / (l1 / m1)

c free volume parameter (defined in
t time (s) Seth and Gupta19)

tf total (final) reaction time (s)

Subscripts/Superscripts
tf o initially assumed value for tf (s)

d desired value
T (o ) (t ) initial guess temperature history

in Pontryagin’s technique f final value (at t Å tf )
T (t ) temperature at time t (K)

min minimum
u control vector (scalar, u , in this

work) o initial value
u ( i ) ( j ) value of control variable at the end

of j th time interval in the i th chro- opt optimal value
mosome

umin, umax lower and upper bounds on the
control variable The authors would like to thank Professor Kalyanmoy

Dumin, minimum and maximum changes Deb, Department of Mechanical Engineering, IIT
Dumax allowed between neighboring Kanpur, for providing us the computer code, SGA, and

values of u for having several useful discussions. Also, we appreci-
ate the partial support of this study through a grantU ( i ) ( j ) value of control variable at the end
from the Department of Science and Technology, Newof j th ( interpolated) time inter-
Delhi, as well as through Grant No. 22 (0232)/93/val in the i th chromosome
EMR-II of the Council of Scientific and Industrial Re-Vl volume of liquid at time t (m3)
search, New Delhi, India.
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